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A B S T R A C T

Computing technology plays a crucial role in the field of drug discovery and development. With the rapid
development of genomics and the improvement of databases, the application of genomics-based tools is important
in drug discovery and development. These tools can deeply explore the information in gene expression profile
databases, revealing the connections and interactions between drugs, diseases and genes, and providing strong
support for drug discovery and development. This paper introduces various significant genomics-based tools for
drug discovery and development, discusses the advantages of deep learning and artificial intelligence in utilizing
large-scale genomic data, and reveals the development trends and future prospects of drug genomics tools. The
continuous progress of these tools will provide more accurate and efficient support for drug discovery and
development.
In the past few decades, the development of high-throughput
sequencing technology has led to the improvement of gene expression
profile databases, enabling us to measure and analyze large-scale gene
expression data. The effective utilization of genomic data plays a crucial
role in drug development and disease research. Traditional drug devel-
opment focuses on studying pathological targets. However, for diseases
with unknown targets and most small molecule drugs, we still lack a
comprehensive understanding of their mechanisms and in-
terconnections. Exploring the connections between diseases, genes, and
drugs is currently a hotspot in scientific research.

Genomics-based tools for drug discovery and development can deeply
explore the information in gene expression profile databases, revealing
the connections and interactions between drugs, diseases, and genes.
These tools assist in drug development by discovering potential drug
candidates, thus greatly advancing research progress in the fields of drug
development and disease research.

This paper discusses the development process of genomics-based
tools for drug discovery and development (Fig. 1, Table 1) and ex-
plores how the combination of large-scale genomic data and computer
technology will impact the future of drug development.
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1. First-generation genomics-based tools for drug discovery and
development

Before the advent of high-throughput sequencing technologies, sci-
entists utilized traditional Sanger sequencing, which was slow and costly,
making overall genomic studies challenging. The emergence of DNA
microarrays provided a simple and natural tool for comprehensive and
systematic genomics,1 empowering high-throughput gene expression
analysis and the establishment of expression profile databases.2 This led
to the establishment of various genomics databases, primarily expanding
their data using DNA microarray technology (Fig. 2). It should be noted,
however, that while this paper distinguishesS between first- and
second-generation databases and analysis tools based on their estab-
lishment time and sequencing technology, it is important to recognize
that databases have continually updated or merged with others. For
instance, the first-generation database CMap1 merged into the
second-generation database CMap2, while GEO, CCLE, and GDSC remain
continuously updated.
1.1. Gene expression Omnibus (GEO)

GEO is a globally shared gene expression database created and
maintained by the National Center for Biotechnology Information (NCBI)
ity, Guangzhou, 510006, China.
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Fig. 1. Schematic showing the development of genomics-based tools.
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in 2000, which includes microarray and other high-throughput data.3 It
can be accessed through http://www.ncbi.nlm.nih.gov/geo/and is used
for effective and efficient drug repurposing and identification of drug
targets/pathways. GEO provides a wide range of gene expression data,
including samples from different cancer types and treatment conditions,
enabling researchers to conduct large-scale bioinformatics analysis and
identify potential biomarkers associated with radiation therapy sensi-
tivity and patient prognosis.4 Most importantly, GEO not only serves as a
database but also simplifies the data analysis process, allowing all re-
searchers to easily utilize the data in their own studies.5–7 Researchers
have developed various functions using GEO microarray datasets to
reevaluate disease classification, identify potential drug side effects, and
economically and efficiently analyze drug targets or pathways.8
1.2. Cancer Cell Line Encyclopedia (CCLE)

The first-generation Cancer Cell Line Encyclopedia (CCLE),
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completed in collaboration with the Broad Institute, Dana-Farber Cancer
Institute, and other research institutes, can be accessed at https://site
s.broadinstitute.org/ccle. It accurately characterizes the genetic fea-
tures of cancer cell lines, including gene expression, chromosomal copy
number, and large-scale parallel sequencing data from 947 human cancer
cell lines.9 Additionally, 24 anticancer drugs have been pharmacologi-
cally evaluated on 479 cell lines to determine predictors of drug sensi-
tivity based on genetic, lineage, and gene expression factors. By
considering gene predictions of drug response, a more personalized
approach can be developed, accelerating the emergence of individualized
treatment plans10 and providing valuable insights for the development of
new strategies for cancer treatment.11
1.3. Genomics of Drug Sensitivity in Cancer (GDSC)

Genomics of Drug Sensitivity in Cancer (GDSC) database (www
.cancerRxgene.org) is a freely accessible public resource for studying

http://www.ncbi.nlm.nih.gov/geo/
https://sites.broadinstitute.org/ccle
https://sites.broadinstitute.org/ccle
http://www.cancerRxgene.org
http://www.cancerRxgene.org


Table 1
An overview of databases.

Database/Tool Description Datasets URL link

Gene Expression Omnibus (GEO)6 GEO is an international public repository that archives and freely
distributes microarray, next-generation sequencing, and other forms of
high-throughput functional genomics data. GEO2R is provided as a tool to
compare two or more groups of Samples in order to identify genes that are
differentially expressed across experimental conditions.

Genetic Data
DataSets:4348
Series: 211,302
Platforms:25,476
Samples: 6,762,989

https://www.nc
bi.nlm.nih.gov/geo/

Genomics of Drug Sensitivity in
Cancer (GDSC)12

The GDSC database integrates heterogeneous cancer genomic datasets
and anti-cancer drug responses on thousand cancer cell lines. GDSCTools
is developed to identify clinically relevant genomic markers of drug
response.

Compounds: 621
Dose-response curves: 576,758
Genomic associations tested: 722,057

http://www.cancerrx
gene.org/

Gene expression profile
compendium17

This method provides important tools for revealing cellular functions and
interference mechanisms through genomics research, making it a reality
to build a feature library of drugs based on expression profiles

– –

Next-generation Cancer Cell Line
Encyclopedia

（CCLE）40

The Cancer Cell Line Encyclopedia (CCLE) project is an effort to conduct a
detailed genetic characterization of a large panel of human cancer cell
lines. The CCLE provides public access to genomic data, visualization and
analysis for over 1100 cancer cell lines.

Genetic Data：329 cell lines
RNA Expression Data：1019 cell
lines
Fusion calls：1019 cell lines
Epigenetic and Histone Modification
Data
DNA methylation by RRBS
CCLE Global Chromatin Profiling
data
Proteomics Data
Metabolomics Data

https://sites.broadins
titute.org/ccle/

Drug Repurposing Hub41 The Drug Repurposing Hub is a collection of FDA-approved drugs, drugs
undergoing clinical trials, and pre-clinical tool compounds.

Samples: 16,826
Protein Targets: 2183
Unique Compounds: 7934
Drug Indications: 670

https://repo-hub
.broadinstitute.org/re
purposing

NCI Transcriptional
Pharmacodynamics Workbench
(NCI TPW)42

NCI TPW provides advanced computational and visualization tools for the
genome-wide characterization of NCI-60 cell lines and response to 15
different anticancer drugs at different time points.

Genome: NCI-60 human cell lines
Compounds: 15 different anticancer
drugs

https://tpwb.nci.nih.gov

CancerRxTissue45 CancerRxTissue provides predictive models to predict drug sensitivity for
both normal and tumor tissues.

Drug Sensitivity Predictions: 272 https://manticore.niehs.
nih.gov/cancer
RxTissue/

CancerTracer48 CancerTracer is a manually curated and integrated database for
deciphering tumor heterogeneity at individual patient level.

Tumor Samples: 6000þ http://cailab.labsha
re.cn/cancertracer

Catalogue of Somatic Mutations in
Cancer

（COSMIC）54

COSMIC covers coding mutations, non-coding mutations, gene fusions,
copy-number variants and drug-resistance mutations.

Total genomic variants: 2,385,4105
Genomic non-coding variants:
16,304,701
Genomic mutations within exons:
5,078,567
Samples: 1,520,321
Fusions: 19,428
Whole genome screen samples:
42,519
Copy number variants: 1,207,190
Gene expression variants: 9,215,470
Differentially methylated CpGs:
7,930,489

https://cancer.sanger.
ac.uk/cosmic

Carcinogenic Potency Database
（CPDB）55

CPDB collects results of 6540 chronic, long-term animal cancer tests on
1547 chemicals.

Animal Cancer tests: 6540 https://files.toxplanet
.com/cpdb/cpdb.html

PharmacoGx56 PharmacoGx is an R package to analyze large-scale pharmacogenomic
datasets.

– https://github.com/bh
klab/PharmacoGx

CMap: L1000 platform60 L1000 collects perturbation-driven gene expression datasets. Profiles: 3.02 M
Compounds: 33,609
Perturbagens: 81,979
Signatures: 1.16 M
240 cell contexts (12 primary)

https://clue.io/

Deep Learning based Efficacy
Prediction System (DLEPS)83

DLEPS is a Python package that uses deep learning to predict the efficacy
of drugs based on chemical structure, gene expression and target activity.

– https://www.dleps.tech
/

Generalist Medical AI (GMAI)100 GMAI is a type of medical AI model that can perform a variety of tasks
with minimal or no task-specific labeled data. Through self-supervision on
large and diverse datasets, GMAI could interpret various combinations of
medical patterns.

– –

Multi Omic Spatial Atlas in Cancer
（Mosaic）101

MOSAIC generates multimodal data for a total of 7000 patients in seven
cancer indications and develop AI-based analytical tools. Data modalities
include spatial and single cell transcriptomics and proteomics, bulk
molecular profiling, pathology images, and curated clinical information.

Cancer indications：7
Patient samples：7000
Data modalities：6

https://www.mosaic-re
search.com/
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the relationship between cancer drug sensitivity and genomic charac-
teristics.12 By analyzing genomic and drug sensitivity data from a large
number of cancer cell lines, GDSC aims to facilitate the development of
new cancer therapies through the preclinical identification of therapeutic
biomarkers. In the GDSC project, researchers use high-throughput
201
techniques to measure drug sensitivity in cancer cell lines for hundreds of
drugs. At the same time, they analyze the genomic characteristics of these
cell lines, including gene mutations, chromosomal rearrangements, and
gene expression data. Through the integration and analysis of these
large-scale datasets, GDSC can discover potential associations between

https://www.ncbi.nlm.nih.gov/geo/
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Fig. 2. Schematic depiction of 1st generation genomics-based tools.
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the sensitivity of cancer cells to certain drugs and genomic features.
These genomics-based data help to better understand the mechanism of
action of cancer drugs and provide guidance for precision medicine13,14

and personalized therapy.15,16
1.4. Gene expression profile compendium

In 2000, Hughes, Marton, and others proposed a method called
“compendium” to detect the impact of non-characteristic disturbances
caused by unknown factors on cell function.17 They built a comprehen-
sive analysis database by applying drugs to yeast and using DNA
microarrays to construct a gene expression profile database. By
comparing gene expression profiles, they identified the cellular pathways
affected by the disturbance. This method does not rely on specific target
proteins or pathways, but uses the pattern of overall transcriptional
changes to “fingerprint” cellular processes. It can help understand the
effects of various mutations and compounds on cells and has the potential
to discover unknown cellular pathways or responses. This method pro-
vides important tools for revealing cellular functions and interference
mechanisms through genomics research, making it a reality to build a
feature library of drugs based on expression profiles.18

However, the compendium has its limitations.19 It requires a large
number of rich reference gene profiles and high-quality transcription
profiles to support analysis. It has not been tested in mammalian cells,
and the interpretation of interactions and associations between multiple
transcription changes requires further validation and functional research.
But this pioneering work has laid the foundation for the practical
application of expression profiles.
1.5. First-generation connectivity map (CMap1)

In 2006, Lamb, Crawford, and others constructed the first-generation
CMap, which contains a gene expression profile database of 164 drugs
and non-drugs.20 The first-generation CMap uses microarray technology
to measure the gene expression profile of mammalian cell lines after drug
treatment, covering hundreds of genes, and adopts a non-parametric,
rank-based pattern matching strategy for gene set enrichment analysis
(GSEA).21 CMap can use GSEA analysis to compare the similarity of gene
expression profiles between different samples as a whole, revealing
biological changes under different conditions and the corresponding
gene set enrichment situation.22 It does not require precise optimization
of cell type, concentration, and treatment time, providing a truly uni-
versal, systematic, and biologically relevant method.

Researchers can submit a gene profile related to a specific disease,
and CMap will compare the submitted gene profile with the expression
profile database.20 Researchers will receive a list of drugs, some of which
may have a presumed therapeutic effect on the disease or a known
mechanism of action, thereby enhancing the biological understanding of
the disease. Submitting the expression profile after drug action can also
clarify the mechanism of new drugs.23,24 This method can reveal the
connection between drugs, genes, and diseases. These analysis results are
integrated into the Connectivity Map database, becoming a public
resource for researchers to query and use.
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Drug repurposing is an expensive and challenging method in drug
development,25 yet the first-generation CMap holds significant potential
in drug development and drug repurposing.26,27 Specific examples
include a small molecule for alleviating muscular atrophy28; parbenda-
zole used for treating osteoporosis29; identifying existing drugs for
treating colorectal cancer30; multiple drugs targeting COX2 and ADRA2A
repurposed for treating diabetes31; identifying agonists and antagonists
of estrogen32; personalized treatment for clinical cancer therapy.33

Common research methods for drug repurposing also include repurpos-
ing based on the side effects of existing drugs.34

However, the first-generation CMap has some limitations and draw-
backs: the database is small in scale and lacks necessary richness; the high
cost of commercial gene expression microarrays and RNA sequencing
hinders the scale of CMap; in mammalian cell culture, traditional hier-
archical clustering methods mainly detect structures related to cell type
and similarity, and mask more subtle signals from short-term treatment
with small molecules; hierarchical clustering methods require all gene
expression profile data to be generated on the same gene chip platform,
limiting its future practicality. An analysis method is needed which can
detect multiple components of cell response under a given disturbance.

2. Second-generation genomics-based tools for drug discovery
and development

Compared to traditional methods, DNA microarrays enable the
simultaneous detection of thousands of gene expressions, saving time and
cost. However, DNA microarrays are less sensitive to genes with signif-
icant expression differences, resulting in a narrower dynamic range.35,36

In contrast, high-throughput sequencing technology can detect various
aspects of gene expression levels, such as RNA expression level, Single
Nucleotide Variants (SNVs), Copy Number Variations (CNVs), and
Chromatin Immunoprecipitation Sequencing (ChIP-Seq), providing a
more comprehensive genomic information.37 NGS technology surpasses
DNA microarrays in sensitivity and dynamic range,38 bringing compre-
hensive, high-throughput, and accurate gene expression information,
accelerating research on gene functions and regulatory mechanisms, and
providing new tools and perspectives for disease diagnosis, drug devel-
opment, and personalized medicine.39 Based on NGS technology,
second-generation databases emerged by incorporating NGS data onto
the existing DNA microarray data, thus initiating a new era (Fig. 3).
Second-generation databases are collaborative efforts combining DNA
microarrays and NGS technology. Nevertheless, the proportion of NGS
data in databases has been increasing over time due to its ability to
characterize more information, driven by decreasing prices and contin-
uous technological advancements.
2.1. Next-generation Cancer Cell Line Encyclopedia

The release of the next-generation Cancer Cell Line Encyclopedia has
made a significant contribution to cancer research.40 This version pro-
vides more comprehensive and detailed information about the genetic
characteristics of cancer cell lines, and explores the associations between
these characteristics and phenotypes such as the dependence on specific



Fig. 3. Schematic depiction of 2nd generation genomics-based tools.
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genes and response to drug treatment. Researchers also use the Cancer
Dependency Map database to study the effects of individual genes on
cancer cell proliferation to determine gene necessity. In addition, the
updated encyclopedia covers multi-omics data such as genetic mutations,
RNA splicing, DNA methylation, histone modifications, microRNA
expression, and protein expression for over a thousand cell lines. This
updated information helps to uncover new mechanisms of cancer sup-
pression and may serve as targets for precision therapy. Overall, this
version of the Cancer Cell Line Encyclopedia provides a deeper under-
standing and new research directions for cancer research.

2.2. Drug repurposing center: next-generation drug repository and
information resource

The online Drug Repurposing Center (https://repo-hub.broadinstit
ute.org/repurposing) collects a large number of approved drugs with
clinical research and known safety information, and provides detailed
information about these drugs, such as drug structure, target interactions,
pharmacological parameters, etc.41 Drug development requires a signif-
icant amount of cost and time, and many potential drugs are eliminated
in preclinical stages, with some drugs even being recalled after market
release. These drugs are valuable resources, and reusing them could save
a substantial amount of resources. Previously, large-scale evaluation of
drug effects was very challenging, but the development of genomics, such
as high-throughput expression profile databases like CMap, has facili-
tated drug repurposing. This forms the basis for the establishment of the
Drug Repurposing Center.

2.3. NCI transcriptional pharmacogenomics Workbench (NCI TPW)

The NCI TPW is a platform (https://tpwb.nci.nih.gov) created by the
National Cancer Institute.42 By measuring the gene expression changes in
the NCI-60 cell line panel after exposure to 15 anticancer drugs, common
transcriptional responses across drugs and cell types have been identi-
fied, along with gene expression changes associatedwith drug sensitivity.
Furthermore, the NCI TPW demonstrates its value in studying clinically
relevant molecular hypotheses and identifying candidate biomarkers for
drug activity.43 The NCI TPW allows researchers to explore gene
expression regulation through the associations between molecular
pathways, drug targets, and drug sensitivity.44 It provides us with a
comprehensive resource that helps deepen our understanding of the
sensitivity of common anticancer drugs to tumor cell properties.

2.4. CancerRxTissue

CancerRxTissue (https://manticore.niehs.nih.gov/cancerRxTissue) is
a database constructed by researchers using data of gene expression and
drug sensitivity in cancer cell lines to build predictive models.45 The
model identifies known interactions between drugs and genes then dis-
covers potential novel drug-gene associations. The predictive models are
applied to approximately 17,000 samples from the TCGA and GTEx da-
tabases to predict the sensitivity of normal and tumor tissues to drugs.
The researchers have also created a website for users to visualize and
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download their prediction data for research purposes.
Although CancerRxTissue is relatively new, it has already demon-

strated its utility, such as predicting pancreatic ductal adenocarcinoma
patients who are more sensitive to paclitaxel46 and predicting drug
sensitivity for temozolomide (TMZ).47 The tool may have significant
implications for preclinical drug testing and phase I clinical trial design in
future.

2.5. CancerTracer

CancerTracer (http://cailab.labshare.cn/cancertracer) is a manually
curated database designed to track and characterize the evolutionary
trajectories of tumor growth in individual patients.48 Researchers have
collected over 6000 tumor samples from 1548 patients, covering 45
different types of cancer. CancerTracer integrates clinical and genomic
alteration data related to tumor heterogeneity, aiding researchers in
better understanding the extent of tumor heterogeneity and its evolution
during disease progression. This platform allows users to quickly explore
the spatial composition and evolution trajectories of tumor subclones,
enabling the identification of major and minor driver gene mutations,
such as in the case of the TRACERx project wherein an attempt is made to
track the evolution of non-small cell lung cancer and explore the impact
of tumor heterogeneity on treatment outcomes.49

2.6. Catalogue of somatic mutations in cancer (COSMIC)

The Catalogue of Somatic Mutations in Cancer, COSMIC (https
://cancer.sanger.ac.uk/cosmic), was launched in 2004 as a free
resource initially focused on curating and displaying somatic mutation
data for four genes: BRAF, HRAS, KRAS, and NRAS.50 COSMIC focuses on
curated genes, the preservation of somatic mutation data, and commu-
nity sharing.51 The COSMIC database provides researchers with vital
information about somatic gene mutations, helping them assess the
functional effects of different mutations and gain a deeper understanding
of their impact on protein activities.52 Understanding the functional ef-
fects of mutations in specific tumors can reveal insights into the mech-
anisms of tumor development and potential therapeutic targets.

One of the strengths of COSMIC is its regular release of new versions
every few months.53 COSMIC ensures that newly added cancer genes are
published after comprehensive curation of relevant literature. Although
there is no recent publication introducing a new version since the last
major release,54 the official website continues to be regularly updated,
with the latest version v98 (May 2023).

2.7. Carcinogenic potency database (CPDB)

The Carcinogenic Potency Database, CPDB (https://files.toxplanet
.com/cpdb/cpdb.html), is a standardized resource that collects chronic
carcinogenicity test results for 45 years.55 This database aims to collect
and compile data on the carcinogenic effects of compounds. Currently, it
includes data from 6153 experiments reported in literatures and the
technical reports of the National Cancer Institute (NCI)/National Toxi-
cology Program (NTP). CPDB provides information on the strain, gender,

https://repo-hub.broadinstitute.org/repurposing
https://repo-hub.broadinstitute.org/repurposing
https://tpwb.nci.nih.gov
https://manticore.niehs.nih.gov/cancerRxTissue
http://cailab.labshare.cn/cancertracer
https://cancer.sanger.ac.uk/cosmic
https://cancer.sanger.ac.uk/cosmic
https://files.toxplanet.com/cpdb/cpdb.html
https://files.toxplanet.com/cpdb/cpdb.html
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compound administration route, target organs, histopathology, and the
authors' evaluation of carcinogenicity for each experiment. It also offers
quantitative data on statistical significance, tumor incidence,
dose-response curve morphology, experiment duration, duration of
compound administration, and dosage rate. With CPDB, researchers can
assess the carcinogenic potential of specific chemicals and evaluate their
risks to human health.

2.8. PharmacoGx: a computational pharmacogenomics platform

The aforementioned databases contain thousands of expression pro-
file data, but their analysis standards are vague, fragmented, and lack
standardized methods of access and analysis, limiting the potential of
pharmacogenomics. An open-source R package called PharmacoGx is
available on GitHub.

PharmacoGx is a computational pharmacogenomics platform
designed to integrate large-scale pharmacogenomics datasets and pro-
vide standardized annotation, storage, access, and analysis procedures to
foster the development of pharmacogenomics research.56 The platform's
design aims to eliminate biases from different data sources, such as batch
effects, differences between analysis platforms, and cell-type-specific
variations, to best reveal drug-induced effects. PharmacoGx consists of
two fundamental components. The first component is an efficient data
structure for storing pharmacological and molecular data, as well as the
experimental metadata provided by pharmacogenomics datasets. This
storage scheme provides a universal interface, standardizes cell line and
drug identifiers, and is easily accessible. It also allows for comparative
analysis across different pharmacogenomics datasets. The second
component is a set of functions for data manipulation and mining tasks.
These functions include bias removal, creating signatures representing
drug-induced changes in cell line gene expression, implementing con-
nectivity mapping analysis, and computing connectivity scores to infer
the associations between drug-induced features and phenotypes. These
functions are not limited to specific datasets and can be performed on
different drug perturbation datasets.

What sets PharmacoGx apart is its ability to compare query results
frommultiple datasets in a unified database. This functionality makes it a
powerful tool to assist researchers in pharmacogenomics research,57 such
as screening sensitizers for cancer radiotherapy58 and studying in vitro
drug sensitivity,59 as well as developing newmethods and functionalities
to better understand drug-induced effects.

2.9. Second-generation CMap: L1000

In 2017, Subramanian, Narayan et al. established a truly feasible and
practical comprehensive CMap using the L1000 chip sequencing plat-
form.60 The expanded CMap can be used to discover mechanism of action
Fig. 4. A workflow to identify disease
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of small molecules and identify novel disease-related compounds (Fig. 4).
It has high reproducibility that matches RNA sequencing, with high
throughput and low cost, making it suitable for large-scale CMap. The
researchers compared L1000 with the standard method of gene expres-
sion profile analysis, RNA-seq, and found that L1000 has a high similarity
to RNA-seq in gene expression profile analysis. Although they are
different analysis platforms, researchers also believe that if there were
lower-cost RNA-seq options, RNA-seq would be a better choice. This
feature provides the basis for L1000 as a more economical and
high-throughput gene expression analysis method and demonstrates its
feasibility and potential.

Importantly, the LINCS consortium L1000FWD software application
visualizes gene expression features as graphs and can be used to search
for similar or opposite features.61 This study created a network using
L1000 and cell viability features, with nodes representing features and
organization based on similarity. By changing colors and shapes, similar
feature clusters are visually displayed. This provides a global view of
gene expression space in six human cell lines.

L1000 has been used for discovering drug mechanisms, such as con-
firming the moa of two histone deacetylase inhibitors and a topoisom-
erase inhibitor62; drug repurposing, such as the small molecule
CGP-60474 as a potent antiseptic63; a small molecule for treating cystic
fibrosis64; and a small molecule for treating melanoma65; functional
annotation of disease genes66; and providing information for clinical
trials, such as predicting drug side effects.67

Despite its many advantages, L1000 also has some limitations,
including lower signal resolution (using only 1000 landmark transcripts),
limited coverage, dependence on probe selection, and limitations in
robustness for specific cell types.68 Researchers need to consider these
factors in combination with their specific needs and experimental designs
when selecting analysis platforms. However, if lower-cost and more ac-
curate sequencing methods become available, their advantages over
L1000 would become more apparent, such as TempO-Seq (an upgraded
version of L1000) compared to S1500þ,69 as expected.70

Like all large community resources, the full potential of CMap can
only be realized over time.71 Its usefulness in elucidating small molecule
mechanisms, providing functional readouts of genetic variations, or
generating new therapeutic hypotheses remains to be observed. How-
ever, the emergence of L1000 has rebuilt a wall for expression profile
research, and like GEO, L1000's data can complement other databases.72

3. Application of deep learning in drug discovery and
development

Deep learning includes many frameworks, which is a branch of ma-
chine learning.73 Deep learning plays a crucial role in interpreting
various types of data (Fig. 5). It encompasses various model architectures
-related compounds using CMap.



Fig. 5. Schematic depiction of the application of deep learning in drug discovery.
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and algorithms, such as convolutional neural networks, recurrent neural
networks, and autoencoders, among others. Deep learning has achieved
significant advancements in search technology, natural language pro-
cessing, data mining, data analysis, speech recognition, recommendation
and personalization techniques, and other related fields.

Deep learning has demonstrated powerful capabilities in various
fields, including image74 and speech recognition,75 among others. It has
also made promising progress in natural language understanding,76 such
as topic classification, sentiment analysis, question answering, and lan-
guage translation. The advantage of deep learning is in discovering
complex structures in high-dimensional data without the need for
manual feature engineering. With further development of learning al-
gorithms and architectures, deep learning is expected to achieve more
successes in the future.

3.1. Deep learning in the field of drug research

Thanks to the development of deep neural networks, they can effec-
tively utilize the parallel computing capabilities of modern GPUs.73 With
significant advancements in GPU hardware and increased availability of
GPU computing resources, deep learning has great potential in the field
of drug research. It can leverage large-scale drug databases to predict
various aspects of molecular pharmacology, selectivity, and toxicity in an
automated manner. It can help accelerate the screening and optimization
process of drug candidates and bring higher efficiency and success rates
to drug discovery. Examples include drug structure-activity prediction,77

computational models for accurately predicting splicing patterns based
on genomic features and cellular context to investigate the impact of
genetic variations on splicing,78 predicting the effects of DNA mutations
on gene expression and diseases,79 predicting drug-induced liver
injury,80 rapid identification of effective DDR1 kinase inhibitors,81 and
discovering novel antibiotics using drug repurposing center combined
with deep learning,82 among others, which are changing the traditional
drug development process.

3.2. Deep learning based efficacy prediction system (DLEPS)

Traditional drug research focuses on single targets or disease features,
while most diseases, drugs, and genes have interrelationships.
Combining deep learning with pharmacogenomics enables more accu-
rate and comprehensive drug research and design. In 2021, Zhu J and
others trained a new generation of deep learning-based efficacy predic-
tion system (DLEPS) using the transcription profiles of over 20,000 small
molecules from the L1000 project.83 This system uses the feature changes
in gene expression profiles under disease states as input to identify
candidate drugs. It constructs a universal model through two-stage
training, applicable to various diseases, especially for diseases without
specific targets. By selecting the feature transcriptomes of disease genes
for study and using the input of GSEA gene signatures, DLEPS calculates
scores based on epigenomics. Then, corresponding compounds with
positive and negative scores are visualized. However, the disadvantages
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of DLEPS are evident. It relies on the limited data volume of L1000,
which is insufficient for deep learning, and DLEPS lacks continuous up-
dates and has a small community. However, it has opened a new direc-
tion for combining transcriptional profile databases with deep learning.

3.3. Deep learning throughout the drug development process

Thanks to the development of next-generation sequencing,84 “omics”
technologies such as genomics,85 epigenomics,86 and pharmacogenomics
have flourished,87 resulting in exponentially growing databases. The
progress in information technology, computer science, and computa-
tional biology, combined with the advancement of deep learning, has
created a fertile ground for large AI models. Deep learning has already
been applied in the healthcare system and can play a role throughout the
entire process of drug development, from research to clinical application.
For example, deep learning combined with various data types can iden-
tify cancer subtypes,88 predict drug response and synergies,89 facilitate
co-administration,90 and advance clinical pharmacology.91 It also has a
significant impact in drug repurposing, like the Drug Repurposing Cen-
ter, which can save a substantial amount of resources for society.
Combining drug repurposing with deep learning has also seen new
developments.92,93

However, despite the remarkable achievements of deep learning in
various aspects of drug development,94 the application of deep
learning-driven methods still needs to be translated into standard clinical
practice, and the integration of computer simulations throughout the
personalized medicine process remains a challenge.95 Even though deep
learning is now applied in various fields, there are still notable “disad-
vantages",96 such as the “black-box” nature and the issue of trust in
results.

4. Application of AI in drug discovery and development

Various genomics tools discussed earlier have inherited a massive
amount of data, and when combined with deep learning, they can
revolutionize drug development. These tools contain extensive infor-
mation on drug compounds, biological activities, pharmacological
characteristics, gene characteristics, etc. Through training and learning
with deep learning models, researchers can predict the effects, side ef-
fects, and safety attributes of drugs. The advantage of this approach is
that it can autonomously discover potential patterns and correlations in
large-scale data, unveiling knowledge that humans may overlook or find
difficult to perceive. By leveraging the computational power of com-
puters and the advantages of deep learning, the drug development pro-
cess can be accelerated, reducing reliance on human resources and
helping discover more effective and safer drugs. However, it should be
noted that, in drug development, deep learning models still require
empirical data as input, and they inevitably face challenges in data
quality and scarcity.97 Additionally, the results obtained from deep
learning models should be considered as reference and assistance, and
final decisions still require clinical validation and evaluation by
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professionals.
Deep learning is the key technology for establishing foundational

models, which were limited in their impact due to the limitations of
computer processing power. Today, with the continuous improvement in
computational power, AI models have emerged as a logical consequence,
such as GPT,98 which has undergone a qualitative change due to the
accumulation of massive data, surpassing our imagination regarding its
scale and scope.

AI models refer to algorithms or systems designed to simulate human
intelligence and solve specific problems. These models can employ
various techniques and methods. Merely learning from individual data-
sets is insufficient for revealing more connections. By establishing AI
models and utilizing multiple larger datasets and more advanced algo-
rithms, more intrinsic connections could be revealed, and novel medi-
cines might be achievable (Fig. 6).

4.1. Biomedical and health informatics models

Models in the field of healthcare and biomedical informatics process
multimodal data from multiple sources through training. These sources
include healthcare professionals, payment organizations, institutions
(such as universities, non-profit organizations, and governments), phar-
maceutical companies, wearable devices, and medical publications/fo-
rums.99 Data can take various forms, including images (e.g., chest
X-rays), videos (e.g., ultrasound), charts of chemical substances, tables of
electronic health records, clinical notes, textual data, time series (e.g.,
electrocardiograms), and genetic data.

After training, these foundational models can be utilized for various
tasks in the healthcare and biomedical fields,99 such as diagnosis, prog-
nosis, treatment recommendations, drug development, and disease risk
prediction. Interestingly, applying models to these tasks generates new
data, thereby improving the models and the tasks themselves.

4.2. Generalist Medical AI (GMAI)

In the clinical field, Generalist Medical AI (GMAI) is a type of medical
AI model that can perform a variety of tasks with minimal or no task-
specific labeled data.100 Through self-supervision on large and diverse
datasets, GMAI flexibly interprets various combinations of medical pat-
terns, including data from imaging, electronic health records, laboratory
results, genomics, charts, or medical texts. The model generates expres-
sive outputs in the form of free-text explanations, verbal suggestions, or
image annotations, highlighting its advanced medical reasoning
capabilities.

4.3. Multi omic spatial atlas in cancer (mosaic)

Mosaic is a collaboration among AI precision medicine companies,
spatial biology companies, and leading cancer research institutions
Fig. 6. Schematic depiction of the ap
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including the University of Pittsburgh, Gustave Roussy Cancer Campus
(France), and the Lausanne University Hospital (Switzerland).101 It ap-
plies spatial omics technology and artificial intelligence techniques to
advanced cancer research (https://www.mosaic-research.com/).102 This
project covers seven types of cancer: non-small cell lung cancer,
triple-negative breast cancer, diffuse large B-cell lymphoma, ovarian
cancer, glioblastoma, mesothelioma, and bladder cancer, with a total of
7000 patient samples, with 1000 samples for each cancer type. This
collaboration leverages the strengths of clinical practice, drug research,
and artificial intelligence, providing patient samples, generating
high-quality data, developing AI-based analysis tools, and ultimately
compiling a resource widely used in medical research.

Spatial omics, benefiting from the development of high-throughput
sequencing technology.103 reveals deeper and more comprehensive
decoding of the system. Many studies have used spatial omics to do in-
vestigations in deeper levels, such as deciphering spatial organization
and intercellular signaling in the microenvironment of skin cancer in-
vasion through the integration of single-cell and spatial
transcriptomics.104

4.4. Concerns and challenges regarding AI models

Experts in artificial intelligence focus on their respective AI domains,
and there are significant gaps between different fields. For non-AI prac-
titioners, it is challenging to establish models that meet their specific
needs. For healthcare professionals, building their own models seems
almost impossible, especially personalized models for individuals.

Deep learning is a key technology in building the foundational
models, but the availability of foundational models is limited. It is
challenging for experts in the field of artificial intelligence to collaborate
with professionals in different domains, especially for medical re-
searchers who find it almost impossible to establish their own models.
The difficulty lies in how experts in artificial intelligence can collaborate
with professionals in different fields to establish models that meet their
specific needs. Good news is that there are already artificial intelligence
experts who have collaborated with professionals in different disciplines,
such as models for generating functional protein sequences across
different families,105 models for predicting drug-target interactions,106

models for predicting drug toxicity,107 models for compound-protein
interaction prediction,108 DeepConv-DTI model,109 and MONN
model,110 which is a good start.

Regardless of traditional genomics tools or AI models, it is still
necessary to experimentally validate the results obtained. However, the
advantages of these tools are quite evident. By leveraging a large amount
of data, they can reduce a significant amount of tedious workflow and
greatly improve research efficiency.
plication of AI in drug discovery.

https://www.mosaic-research.com/


Table 2
Examples of drugs obtained using the database.

Database Compounds Disease Reference

CMap Tomatidine Skeletal muscle atrophy 28

CMap Parbendazole Osteoporosis 29

GEO and CMap 10 potential
compounds: trichostatin
A, vorinostat, HC toxin,
sodium phenylbutyrate,
mycophenolic acid,
irinotecan, etoposide,
valproic acid,
arachidonic acid,
rifabutin

Colorectal cancer 30

The human
metabolome
database and
CMap

4 drugs targeting COX2:
diflunisal, nabumetone,
niflumic acid and
valdecoxib.
2 drugs targeting
ADRA2A:
phenoxybenzamine and
Idazoxan.

Type 2 diabetes 31

GEO and CMap KM-00927 and BRD-
K75081836

Cancer 62

GEO and CMap CGP-60474 Endotoxemia 63

GEO and CMap An inhibitor of src-
kinase: PP-2

Cystic fibrosis 64

GEO and CMap Cinnarizine,
digitoxigenin, and
clofazimine

Metastatic uveal
melanoma

65

The Drug
Repurposing
Hub and
deep
learning

Halicin A wide phylogenetic
spectrum of pathogens
including
Mycobacterium
tuberculosis and
carbapenem-resistant
Enterobacteriaceae

82

The Drug
Repurposing
Hub

BRD4780 Mucin-1 kidney disease 111

The Drug
Repurposing
Hub and
CCLE

Disulfiram, tepoxalin Cancer 112

GEO and CMap Oxytocin, fluoxetine,
saquinavir and ribavirin

Sars-CoV-2 113

TCGA and
PharmacoGx

Guanidine
hydrochloride

Triple-negative breast
cancer

114

The Drug
Repurposing
Hub

Obatoclax Sars-CoV-2 115

The Drug
Repurposing
Hub and
CCLE

CR8 CDK inhibitor: depletes
cyclin k

116

DLEPS Ataluren Osteoporosis 117
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5. Conclusion and future perspectives

Since its inception, computers have been used to solve complex
mathematical calculations and computational tasks. In the past, these
calculations required a significant amount of time and manual labor, but
the emergence of computers enabled rapid and accurate completion of
these tasks. Computers can also store vast amounts of data and efficiently
manage and retrieve it, a feat that is difficult for humans to accomplish.
Today, the computing power of computers continues to grow exponen-
tially, and technology is constantly advancing through innovative ap-
proaches. For example, three-dimensional stacked chips and new
computing architectures like CUDA in graphics processing units (GPUs)
have become important means of improving computing power.

The development of big data and computing power has made it
relatively easier to establish pharmaceutical models compared to a few
years ago. However, it remains an enormous challenge for non-artificial
intelligence practitioners to build their own models. Perhaps in the
future, AI self-generating models will become a reality, where providing
data to the model will result in the automatic creation of an appropriate
model. Personalized models will be within reach.

From the simple compilation to various transcriptomic and genomic
databases, we can use these databases for various visual comparisons and
matches to infer the attributes and features associated with diseases,
drugs, and genes. This methodology provides important tools and ap-
proaches for drug development and disease research. Various genomics
databases and tools have revolutionized drug discovery and develop-
ment. Some novel therapeutic compounds or drugs have been obtained
using those databases and tools (Table 2). However, from today's
perspective, the data volume of these tools is still far from sufficient, and
the databases are too scattered with inconsistent standards. This is also
the reason for the emergence of PharmacoGx. Nowadays, we can
aggregate a larger volume of data to build a unified model, which may
enable analysis of all substances involved in biochemical reactions.
Similar to GPT, when data reaches an unimaginable quantity, it triggers a
qualitative change. Biochemical reactions may have subtle variations
that are difficult for a human eye to discern, but AI can discover different
patterns based on a large amount of data. Currently, AI does not need to
transform complex structures like chemical formulas or proteins into
simpler formats to understand them.

Although establishing AI models has become relatively simpler with
the advancement of big data and computing power, building models still
requires high costs. Apart from the cost aspect, there are many challenges
in the pharmaceutical industry. Laboratories are often reluctant to share
their data, including chemical compositions of drugs, pharmacological
and toxicological experiments, animal experiments, and clinical trial
results. These data are protected by patents, even though many classic
drugs no longer have patents. Fortunately, some people advocate for
community-based sharing, as seen in various genomics platforms, most of
which are free to use. As productivity advances, we believe that infor-
mation barriers will become lower. The greatest challenge in construct-
ing models lies in data acquisition and processing. Finding better
solutions to this problem is the challenge faced by leveraging information
technology to assist drug development. Data-sharing systems enable re-
searchers around the world to share genomic information. Traditionally,
most of the data were collected and studied in silos and domain-specific.
The type, format, content, or disciplinary focus of the data could be
different. It is vital to developing international standards and principles
for data sharing ensure a high data quality. And a faster, cheaper, and
more accessible system is required to breaking down information
barriers.
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